Table 1 are not directly accessible. The x and y coordinates were obtained through a least-squares refinement to a final reliability index of R=0.084 by Herpin & Meriel (1964) indicating that the estimated standard deviation in these coordinates should be about 0.01 Å. The z coordinate of the H atom is also determined with the same accuracy as outlined above. The uncertainties in the z coordinates of the heavy atoms, however, are probably larger than this as they have been obtained directly from the (001) electron density projection (Herpin, 1952). However, the coordinates in Table 1 seem to give a very consistent picture of the structure of the (HCO₃)²⁻ ion as apparent from inspection of Fig. 1 and Fig. 3, indicating that the given atomic positions are accurate to about 0.01 Å.

References

BACON, G. E. & CURRY, N. A. (1956). Acta Cryst. 9, 82. HAMILTON, W. C. (1962). Ann. Rev. Phys. Chem. 13, 19.

HERPIN, P. (1952). C. r. Acad. Sci. Paris, 234, 2205.

HERPIN, P. & MERIEL, P. (1964). J. Phys. 25, 484.

KUME, K. & KAKIUCHI, Y. (1960). J. Phys. Soc. Japan, 15, 1277.

NITTA, I., TOMIE, Y. & KOO, C. H. (1952). Acta Cryst. 5, 292.

NITTA, I., TOMIE, Y. & KOO, C. H. (1954). Acta Cryst. 7, 140.

PEDERSEN, B. (1968). Acta Chem. Scand. To be published. PEDERSEN, B. F. & PEDERSEN, B. (1967). Selected Topics in Structure Chemistry, p. 253. Oslo Univ. Press.

ROBERTSON, J. H. (1964). Acta Cryst. 17, 316.

SASS, R. L. & SCHEUERMAN, R. F. (1962). Acta Cryst. 15, 77.

Acta Cryst. (1968). B24, 480

The Crystal Structure of Pu₃Zn₂₂

BY QUINTIN JOHNSON, DAVID H. WOOD AND GORDON S. SMITH

Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 29 June 1967)

The structure of a compound present in the Pu–Zn system at the approximate stoichiometry PuZn_{7.7} has been determined from diffractometrically recorded, single-crystal intensities. The unit cell, containing four formula units of Pu₃Zn₂₂, is body-centered tetragonal with a=8.85, c=21.18 Å. The calculated density is 8.71 g.cm⁻³, and the space group is $I4_1/amd$. This structure also accounts for the published powder pattern of a compound in the Ce–Zn system. Cell constants for Ce₃Zn₂₂ are a=8.930, c=21.36Å.

Introduction

A compound with the approximate composition $PuZn_{7\cdot7}$ was discovered in a phase-relation study of the zinc-rich region of the Pu–Zn system (Cramer & Wood, 1967). The composition and symmetry indicated this to be a new structure type; we have carried out a determination of this structure to establish the actual composition of this material.

Experimental

Details concerning the preparation of Pu_3Zn_{22} are given by Cramer & Wood (1967). To minimize accidental contamination as well as to protect from the atmosphere, crystals were coated with Canada balsam dissolved in xylene. This procedure proved to be more convenient than the use of capillaries, yet provided adequate protection from the radioactive hazards of plutonium.

Single-crystal oscillation, Weissenberg and precession photos showed tetragonal symmetry. The systematic extinctions $[h+k+l\neq 2n; hk0: h, (k)\neq 2n; hhl: (l\neq 2n); 2h+l\neq 4n]$ and the 4/mmm Laue symmetry uniquely characterize the space group $I4_1/amd$. Lattice

constants, a=8.85 and c=21.18 Å, were obtained from uncalibrated Weissenberg and precession photographs and are thought to be accurate to about 0.3%.

Intensities were recorded diffractometrically with use of zirconium filtered Mo $K\alpha$ radiation ($\lambda = 0.7107$ Å). A total of 229 independent reflections were measured up to a 2θ value of 40° . The shape of the crystal resembled a distorted cylinder. A 2θ -dependent absorption correction was applied assuming a cylindrical shape ($\mu r = 3.0$). In addition, a pronounced dependence of intensity with respect to φ was observed. An attempt to remove this dependency was made by measuring the intensities of several reflections at $\chi = 90^{\circ}$ as a function of φ and applying the indicated correction to all data dependent only on the φ value at which the reflection was observed. This correction, which amounted to $\pm 50\%$, was modified in the course of refinements as will be discussed later.

Determination of the structure

Precession photos of Pu_3Zn_{22} were quite similar to those of the Th_2Ni_{17} - and Th_2Zn_{17} -like compounds of Pu-Zn. For example, the *hk*0 zone of Pu_3Zn_{22} could be mistaken for the *hhl* zone of Pu_2Zn_{17} (Th_2Ni_{17} -like).

Table 1. Final parameters

e.s.d.'s are given in parentheses.

		U.S.U. S all	given in parenties	-3.	
	Wyckoff notation*	10 ⁴ x	10 ⁴ y	10 ⁴ z	В
Pu (1)	8(<i>e</i>)	0	0	1217 (3)	1·20 (0·14) Ų
Pu (2)	4(b)	0	0	1/2	1.19 (0.19)
Zn (1)	32(i)	2413 (13)	2309 (11)	1853 (4)	2.13 (0.17)
Zn (2)	8(d)	0	1/4	5/8	1.58 (0.37)
Zn (3)	16(h)	0	2204 (15)	18 (7)	2.16 (0.30)
Zn (4)	16(h)	0	1475 (15)	7415 (6)	2.15 (0.29)
Zn (5)	16(h)	0	1526 (16)	3625 (6)	2.06 (0.29)

* Space group $I4_1/amd$ with origin at $\overline{4}m2$.

Table 2. Observed and calculated structure factors and the phase angle, α

Phase angles differ from the expected values for a centrosymmetric structure because anomalous dispersion corrections have been made.

H K L FU FC ALPHA	H K L FO FC ALPHA	H K L FO FC ALPHA	H K L FO FC ALPHA	H K L FO FC ALPHA	H K L FO FC ALPHA	H K L FO FC ALPHA	H K L FD FC ALPHA
0 0 4 64 67 183.2 0 0 8 602 646 3.5 0 0 12 66 39 4.2	2 C 18 106 103 95.2 2 1 1 58 44 318.3 2 1 3 234 206 228.3	3 1 8 117 117 273.9 3 1 10 175 173 4.0 3 1 12 28 27 94.4	4 1 1 98 85 318.7 4 1 3 28 21 226.6 4 1 5 58 39 313.1	4 4 12 46 58 184.7 5 0 1 37 39 49.0 5 0 3 162 173 134.0	5 3 10 192 235 4.8 5 3 12 28 24 275.2 5 3 14 60 55 5.2	6 2 2 95 78 94.6 6 2 4 127 126 184.5 6 2 6 72 66 276.8	7 1 4 0 2 95.0 7 1 6 16 16 186.4 7 1 8 0 20 95.2
0 0 16 762 772 4.6 0 0 20 81 38 184.7 1 0 1 15 4 227.3	2 1 5 299 271 138.4 2 1 7 52 53 48.6 2 1 9 41 36 318.8	3 1 14 18 20 4.3 3 1 16 139 122 275.0 3 1 18 165 149 5.0	4 1 7 79 83 49.0 4 1 9 62 61 319.2 4 1 11 26 31 228.8	5 0 5 73 74 229.0 5 0 7 34 4 139.7 5 0 9 54 55 49.4	5 4 1 100 90 49.5 5 4 3 108 117 139.4 5 4 5 49 42 50.6	6 2 8 57 1H 1.1 6 2 10 17 1 95.1 6 2 12 64 59 184.6	7 1 10 34 24 187.5 7 2 1 17 9 230.9 7 2 3 227 229 139.8
1 0 5 170 147 228.3 1 0 7 51 35 138.4 1 0 9 55 41 48.6	2 1 11 204 201 229.5 2 1 13 214 203 139.2 2 1 15 51 44 49.7 2 1 17 36 28 319.5	3 2 1 53 45 48.6 3 2 3 558 563 138.6 3 2 5 371 380 226.7 3 2 7 0 3 118.7	4 1 13 40 28 138.3 4 1 15 53 45 50.1 4 1 17 56 48 320.0	5 0 11 67 57 320.3 5 0 13 229 228 229.8 5 0 15 37 28 140.3	5 4 7 73 77 319.8 5 4 9 56 67 49.9 5 4 11 23 15 137.3 5 4 13 44 70 330	6 3 1 19 13 314.3 6 3 3 374 363 229.7 6 3 5 303 314 139.7	7 2 5 80 86 229.5 7 2 7 0 3 142.0 7 2 9 17 23 231.1
1 0 11 74 63 319.J 1 0 13 251 235 229.1 1 0 15 56 29 139.5	2 1 19 116 116 236.1 2 2 0 470 412 3.4 2 2 4 225 228 183.5	3 2 9 43 42 49.0 3 2 11 338 317 139.3 3 2 13 355 325 229.5	4 2 2 137 122 273.9 4 2 4 131 121 183.9 4 2 6 133 103 94.1	5 1 2 169 144 4.0 5 1 4 0 2 274.2 5 1 6 142 140 4.2 5 1 8 42 39 274.4	5 5 2 156 164 4.7 5 5 6 147 173 5.0 5 5 10 156 191 5.2	6 3 9 40 45 319.9 6 3 11 160 182 230.1 6 4 0 132 125 4.4	7 3 4 14 8 275.2 7 3 6 0 11 3.1 7 3 8 69 78 95.5
1 0 17 73 53 49.7 1 0 19 34 22 322.2 1 1 2 69 59 3.3 1 1 6 82 87 3.4	2 2 8 281 263 183.8 2 2 12 130 113 184.2 2 2 16 275 271 4.7 3 0 1 15 7 228.2	3 2 15 49 45 139.9 3 2 17 43 46 49.9 3 3 2 236 214 3.8 3 3 6 98 90 3 0	4 2 8 431 427 4.2 4 2 10 80 72 274.4 4 2 12 144 140 184.6 6 3 14 7 7 7 7 8	5 1 10 132 144 4.5 5 1 12 15 4 274.9 5 1 14 86 85 5.1	6 0 0 413 360 4.3 6 0 2 42 44 94.4 6 0 4 54 60 184.3	6 4 2 127 121 95.0 6 4 4 66 73 184.7 6 4 6 127 145 275.2	7 4 1 17 5 48.1 7 4 3 58 34 322.1 7 4 5 74 90 229.8
1 1 10 56 57 3.7 1 1 14 75 76 4.3 1 1 18 79 78 4.5	3 0 3 281 275 138.5 3 0 5 449 466 226.0 3 0 7 83 88 138.7	3 3 10 228 278 4.3 3 3 14 33 42 185.2 4 0 0 897 931 3.7	4 2 14 74 73 95.0 4 2 16 22 27 1.8 4 3 1 80 76 319.7 4 3 3 196 189 229.0	5 1 16 40 43 275.5 5 2 1 66 62 49.1 5 2 3 138 129 139.1 5 2 5 296 291 229.2	6 0 8 605 655 4.7 6 0 10 84 79 95.0 6 0 12 52 65 184.8	6 4 8 341 389 5.1 6 4 10 70 72 95.5 6 5 1 32 35 320.0 6 5 3 92 106 229.8	8 0 0 573 574 5.2 8 0 2 0 11 275.4 8 0 4 53 77 185.0 8 0 6 51 56 95.6
2 0 0 265 199 3.3 2 0 2 28 18 273.2 2 0 4 122 111 183.3 2 0 6 65 65 81 5	3 0 9 69 70 48.9 3 0 11 272 231 139.1 3 0 13 287 237 229.4	4 0 2 109 121 273.7 4 0 4 80 90 183.8 4 0 6 172 178 93.9	4 3 5 234 225 139.1 4 3 7 37 27 49.3 4 3 9 72 80 319.4	5 2 7 51 52 319.4 5 2 9 71 72 49.5 5 2 11 239 233 139.7	6 G 14 15 18 275.5 6 1 1 14 13 319.1 6 1 3 151 145 229.3	6 5 5 219 247 140.1 6 5 7 14 4 49.4 6 6 0 384 365 5.3	8 1 1 0 12 141.2 8 1 3 56 73 229.7 8 1 5 70 85 139.7
2 0 8 777 842 3.6 2 0 10 77 77 93.4 2 0 12 130 132 184.1	3 0 17 58 53 49.9 3 0 19 38 30 139.0 3 1 2 203 161 3.5	4 0 10 41 28 274.3 4 0 12 10 21 183.6 4 0 14 111 104 94.9	4 3 11 233 254 229.6 4 3 13 66 50 139.0 4 3 15 17 16 230.2 4 4 0 542 507 4.2	5 2 13 113 118 229.7 5 2 15 31 39 320.5 5 3 2 229 220 4.3 5 3 4 20 12 274.4	6 1 5 248 243 139.5 6 1 7 11 5 233.2 6 1 9 26 38 319.6 6 1 11 85 97 229.7	7 0 1 48 53 230.0 7 0 3 44 32 321.1 7 0 7 60 58 140.2 7 6 9 0 4 46.3	8 2 0 59 82 4.2 8 2 2 39 46 275.3 8 2 4 83 91 185.1
2 0 14 51 45 94.5 2 0 16 108 104 4.2	3 1 4 22 17 93.6 3 1 6 85 75 3.7	4 0 16 598 536 5.1 4 0 18 59 55 95.6	4 4 4 89 102 184.2 4 4 8 65 79 4.3	5 3 6 107 107 4.4 5 3 8 51 47 94.7	6 1 13 208 224 140.1 6 2 0 435 411 4.4	7 0 11 78 77 139.8 7 1 2 45 27 185.8	

Table 3. Interatomic distances in Pu₃Zn₂₂

	Ligancy	Distance		Ligancy	Distance
Pu (1)	2 Zn (5)	3.070 Å	Zn (3)	2 Zn (1)	2·549 Å
1 u (1)	$\frac{1}{2}$ Zn (4)	3.180	(*)	1 Zn (5)	2.670
	$\frac{1}{2}$ Zn (3)	3.202		2 Zn (3)	2.751
	$\frac{1}{4}$ Zn (1)	3.240		$\overline{2}$ Zn (1)	2.767
	2 Zn (3)	3.262		2 Zn (4)	2.797
	$\frac{1}{4}$ Zn (1)	3.410		1 Pu (1)	3.202
	2 Zn (2)	3.644		1 Pu (1)	3.262
	2 2 fi (2)	2 0 1 1		1 Pu (1)	3.644
Pu (2)	4 Zn (4)	3.114			
	4 Zn (5)	3.212	Zn (4)	1 Zn (4)	2.603
	8 Zn (1)	3.352		1 Zn (2)	2.631
	4 Zn (2)	3.448		2 Zn (1)	2.691
				2 Zn(1)	2.788
Zn (1)	1 Zn (3)	2.549		2 Zn (3)	2.797
	1 Zn (1)	2.581		2 Zn (5)	2.894
	1 Zn (2)	2.621		1 Pu (2)	3.114
	1 Zn (4)	2.691		1 Pu (1)	3.180
	1 Zn (5)	2.721		1 Zn(5)	3.563
	1 Zn (5)	2.746			
	1 Zn (1)	2.766	Zn (5)	2 Zn (2)	2.597
	1 Zn (3)	2.767		1 Zn (3)	2.670
	1 Zn (4)	2.788		2 Zn (1)	2.693
	1 Pu (1)	3.240		1 Zn (5)	2.721
	1 Pu (2)	3.352		2 Zn (1)	2.746
	1 Pu (1)	3.410		2 Zn (4)	2 ·894
				1 Pu (1)	3.070
Zn (2)	4 Zn (5)	2.597		1 Pu (2)	3.212
	4 Zn (1)	2.621		1 Zn (4)	3.563
	2 Zn (4)	2.631		()	
	2 Pu (2)	3.448			
	()	-			

The cell constants of Pu_3Zn_{22} are related to Th_2Ni_{17} like Pu_2Zn_{17} as follows: $a_t \sim c_h$, $c_t \sim 4\sqrt{3}a_h$ where the subscripts refer to the tetragonal (Pu_3Zn_{22}) and hexagonal (Pu_2Zn_{17}) phases. This similarity proved to be more of a hindrance than a help since the structure is not as closely related to the Th_2Ni_{17} structure as some of the special zonal photographs would indicate.

The structure was solved by recourse to a Patterson map to locate the 12 plutonium atoms. Difference Fourier calculations based on the contribution of plutonium atoms enabled us to locate 88 zinc atoms distributed among five different crystallographic sites. Full-matrix least-squares calculations, using isotropic thermal parameters and the scattering factors of Cromer & Waber (1965) corrected for anomalous dispersion (Cromer, 1965), resulted in an R value of 15%. The refinement was based on |F| with the following weighting scheme (Smith, Johnson & Nordine, 1965): $w = F_o^{1/4}, F_o < A$; $w = A^{5/4}F_o^{-1}, F_o > A$, with A = 510.

> > 02-221

2221321233

-2 - 0333231

433434221

4 4 The agreement was not appreciably affected when the experimentally measured, φ -dependent absorption correction was omitted. In this case, however, the ratio $(kF_o/F_c)^2$, when plotted as a function of φ , described a curve very similar to the experimentally measured φ -dependent absorption curve. This new curve was shifted by about 20° in φ . In subsequent and final refinements we used the measured φ curve shifted by 20°. This single change reduced the R factor to 9.6%. Parameters remained very nearly the same. The shift of the φ -curve probably in some way compensates for the lack of an explicit χ -dependency in the absorption correction.

No noticeable improvement was noted when plutonium atoms were described with anisotropic thermal parameters. Including a separate isotropic thermal parameter for each atom, the R value for 229 reflections is equal to 9.6%. Final atom parameters are shown in Table 1. Observed and calculated structure factors are presented in Table 2, and interatomic distances in

Table 4. Calculated and observed p	oowder pattern f	or Ce_3Zn_{22}
------------------------------------	------------------	------------------

	(Observ	ved data from Lo	tt & Chiotti, 196	6)	
k	1	do	d_c	Io	Ic
0	1	8.246	8.239	1	1
ŏ	3	5.569	5.567	ī	<1
1	2	5.443	5.436	<1	<1
0	· 1		5.340	-	<1
0	4	1.167	4.465	2	1
U	U	4.976	+ +0J	~1	-
-	-	4.710	4.110		~1
0	2	2.070	3.026	~1	1
1	1	2.925	2.920		2
0	5	2.022	2.402	15	15
1	3	3.483	3.403	13	15
0	4	3.428	3.425	2	15
2	0	3.120	3.157	23	15
1	6	3.104	3.101	<1	<1
0	1	-	2.948		<1
1	5	2.916	2.917	23	24
0	7	_	2.888	-	<1
0	6	2.783	2.784	1	1
0	3	2.745	2.746		11
1	2	2.730	2.730	• •	⁸ \ 29
-	-	2.725	- }	28	
2	4	2.718	2.718		10 J
-	-	2.704	- J		
0	8	2.670	2.670	10	18
1	4	-	2.496	·	<1
2	1	-	2.460	-	<1
0	5	2.442	2.442	28	35
1	7		2.425	-	<1
2	3	2.339	2.339	87	101
0	9	-	2.294	-	<1
0	8	2.292	2.292	100	100
0	0	2.232	2.233	43	66
1	6	-	2.212	-	<1
0	2	2.185	2.185	2	2
1	1	2.154	2.155	21	2] 22
2	5	2.142	2·143 👔	51	30 52
0	7	-	2.131	_	1
1	3	-	2.072	-	<1
3	2	2.065	2.065	0	4
0	4	2.054	2.060	7	<1
1	9		2.040	-	<1
$\overline{2}$	8	2.039	2.039	25	22
1	10	_	2.023		<1
2	Õ	1.997	1.997	6	8
2	ž	1.963	1.963	4	4

Table 3. Uncertainties in these distances are about 0.01-0.03 Å.

Subsequent to the determination of this structure, we became aware of the powder pattern reported for a compound tentatively identified as CeZn₇ (Lott & Chiotti, 1966). We have been able to account for this pattern on the basis of Ce₃Zn₂₂, isostructural with Pu₃Zn₂₂. Cell constants are $a = 8.930 \pm 0.003$, c = 21.36 ± 0.01 Å. Calculated intensities and d values for the first 40 lines are compared with the published values in Table 4. The remaining lines show an equally satisfactory agreement. Since the pattern was of a 76.53 wt.% zinc alloy and Ce₃Zn₂₂ corresponds to 77.4 wt % zinc, one would not be surprised to see extra lines arising from CeZn₅. This may account for some of the discrepancies; for example, the 101 line of $CeZn_5$ has an intensity of 47 (out of 100) and would occur at d=3.155, right on top of the 220 line of Ce₃Zn₂₂ which

Fig. 1. Projection of Pu_3Zn_{22} onto the *ac* plane. The centers of two of the hexagonal zinc sheaths (tubes) referred to in Fig. 2 are at x=1/2, z=3/8 and x=0, z=7/8. The axes of these tubes are normal to the plane of Fig. 1. Two more tubes related to the former by the 4_1 screw axis have axes lying in the plane of Fig. 1. These are not easily visualized. The centers of these tubes are at z=1/8 and 5/8.

Fig. 2. Stacking of Pu(1)-containing zinc sheaths. Pu(2) atoms are located in the large cavities formed by this stacking.

was observed about 50% too strong. There is evidence, as well, for a phase at this approximate composition in the La-Zn, Pr-Zn, and Nd-Zn systems (Veleckis, Schablaske, Johnson & Feder, 1967). No diffraction patterns were reported, however.

483

Discussion

The structure of Pu₃Zn₂₂ bears a familial resemblance to the $D2_d$ and related structures such as ThMn₁₂ (Florio, Rundle & Snow, 1952), Th₂Ni₁₇ (Florio, Baenziger & Rundle, 1956), Th₂Zn₁₇ (Makorov & Vinogradov, 1956), and Gd₁₃Zn₅₈ (Wang, 1967). Florio, Baenziger & Rundle (1956) noticed that $ThMn_{12}$ and Th_2Ni_{17} could be obtained from several $D2_d$ (CaZn₅) or AB_5) subcells; the larger cells and different stoichiometries were obtained by replacement of A atoms with pairs of B atoms. Thus, $6AB_5$ cells, in the case of the Th₂Ni₁₇ structure, becomes A_4B_{34} (A_2B_{17}) by the replacement of two A atoms with four B atoms. The general formula for these phases can be expressed as $A_{1-x}B_{5+2x}$. The values of x, which we will call the substitution parameter, and the structure type for $D2_d$ related structures are given in Table 5.

Table 5. Substitution parameter for D2_d-related structures

Composition	Structure type
$A_{13/12}B_{4-5/6}$	Gd ₁₃ Zn ₅₈
AB_5	CaZn ₅
$A_{3/4}B_{5-1/2}$	Pu_3Zn_{22}
$A_{2/3}B_{5-2/3}$	$Th_2Zn_{17}; Th_2Ni_{17}*$
$A_{1/2}B_6$	ThMn ₁₂
	Composition $A_{13/12}B_{4-5/6}$ AB_5 $A_{3/4}B_{5-1/2}$ $A_{2/3}B_{5-2/3}$ $A_{1/2}B_6$

* Johnson & Smith (1967) find that for the Th_2Ni_{17} phase in the Ce-Mg system, x=0.43.

In the case of Pu_3Zn_{22} the integrity of the $D2_d$ subcell has been somewhat compromised, probably to effect more efficient packing. The replacement of Aatoms by two B atoms is preserved, however, and is readily apparent in the structure.

The relation to, yet difference from, the $D2_d$ structure can be seen in Fig. 1, which is a projection of the structure onto the *ac* plane. In this Figure, one of the unusual aspects of the structure can be seen. Zinc atoms form hexagonal tubes surrounding Pu(1). The structure can be suitably described in terms of these tubes, the stacking of which is shown in Fig.2. Pu(2) atoms are accommodated in the large cavities which are formed by this stacking.

This unusual arrangement achieves nearly identical environments for the two different plutonium atoms. The coordination polyhedra (C.P.) of these atoms are shown in Fig.3. Pu(1) has 18 ligands, whereas Pu(2) has 20. In place of the two missing zinc atoms, Pu(1) has two Pu(1) neighbors (which are not considered as part of the C.P.) at a distance of 4.412 Å. The substitution of a pair of zinc atoms for a plutonium atom mentioned earlier accounts for this difference. Pu(1)

- (b)
- Fig. 3. (a) Coordination about Pu(1). Location of neighboring Pu(1) shown by dotted lines. These Pu(1)'s are too distant to be considered part of the coordination polyhedron, but are included to indicate the axis of the zinc sheaths pictured in Fig. 2. (b) Coordination about Pu(2). A pair of zinc atoms, Zn(4), takes the place of the Pu(1), shown by dotted lines in (a).

atoms could be pictured as constituting a one-dimensional chain contained within a zinc sheath. The C.P. of Pu(1) are fused together to form this continuous sheath because of the missing zinc pair.

There are no unusual C.P. encountered among the individual C.P. of zinc atoms. Zn(1) and Zn(2) have 12 ligands arranged in a distorted icosahedron. This distortion is caused, in the case of Zn(1), by three plutonium atoms and, in the case of Zn(2), by two plutonium atoms. There are 13 ligands surrounding Zn(3) in an arrangement similar to that of Ni(2) in the Th₂Ni₁₇ structure (Florio *et al.*, 1956). The C.P. for Zn(4) and Zn(5) could be thought of as half-way between the icosahedral arrangement of Zn(1) and Zn(2) and the thirteenfold ligancy of Zn(3). The extra atom in the Zn(4) C.P. is Zn(5) at a distance of 3.56 Å, considerably longer than the average zinc-zinc distance. In analogous manner, Zn(5) has an extra Zn(4) in its C.P. at this same distance.

This work was done under the auspices of the U.S. Atomic Energy Commission.

References

- CRAMER, E. M. & WOOD, D. H. (1967). J. Less-Common Metals, 13, 112.
- CROMER, D. T. (1965). Acta Cryst. 18, 17.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- FLORIO, J. V., BAENZIGER, N. C. & RUNDLE, R. E. (1956). Acta Cryst. 9, 367.
- FLORIO, J. V., RUNDLE, R. E. & SNOW, A. I. (1952). Acta Cryst. 5, 449.
- JOHNSON, Q. & SMITH, G. S. (1967). Acta Cryst. 23, 327.
- LOTT, B. G. & CHIOTTI, P. (1966). Acta Cryst. 20, 733.
- MAKOROV, E. S. & VINOGRADOV, S. I. (1956). Kristallografiya, 1, 634.
- SMITH, G. S., JOHNSON, Q. & NORDINE, P. C. (1965). Acta Cryst. 19, 668.

VELECKIS, E., SCHABLASKE, R. V., JOHNSON, I. & FEDER, H. M. (1967). Trans. Met. Soc. AIME 239, 58.

WANG, F. E. (1967). Acta Cryst. 22, 579.