Table 1 are not directly accessible. The x and y coordinates were obtained through a least-squares refinement to a final reliability index of $R=0.084$ by Herpin \& Meriel (1964) indicating that the estimated standard deviation in these coordinates should be about $0.01 \AA$. The z coordinate of the H atom is also determined with the same accuracy as outlined above. The uncertainties in the z coordinates of the heavy atoms, however, are probably larger than this as they have been obtained directly from the (001) electron density projection (Herpin, 1952). However, the coordinates in Table 1 seem to give a very consistent picture of the structure of the $\left(\mathrm{HCO}_{3}\right)_{2}^{2-}$ ion as apparent from inspection of Fig. 1 and Fig.3, indicating that the given atomic positions are accurate to about $0.01 \AA$.

References

Bacon, G. E. \& Curry, N. A. (1956). Acta Cryst. 9, 82. Hamllton, W. C. (1962). Ann. Rev. Phys. Chem. 13, 19. Herpin, P. (1952). C. r. Acad. Sci. Paris, 234, 2205.
Herpin, P. \& Meriel, P. (1964). J. Phys. 25, 484.
Kume, K. \& Kakiuchi, Y. (1960). J. Phys. Soc. Japan, 15, 1277.

Nitta, I., Tomie, Y. \& Koo, C. H. (1952). Acta Cryst. 5, 292.

Nitta, I., Tomite, Y. \& Koo, C. H. (1954). Acta Cryst. 7, 140.

Pedersen, B. (1968). Acta Chem. Scand. To be published.
Pedersen, B. F. \& Pedersen, B. (1967). Selected Topics in Structure Chemistry, p. 253. Oslo Univ. Press.
Robertson, J. H. (1964). Acta Cryst. 17, 316.
Sass, R. L. \& Scheuerman, R. F. (1962). Acta Cryst. 15, 77.

The Crystal Structure of $\mathbf{P u}_{3} \mathbf{Z n}_{22}$

By Quintin Johnson, David H. Wood and Gordon S. Smith
Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 29 June 1967)

Abstract

The structure of a compound present in the $\mathrm{Pu}-\mathrm{Zn}$ system at the approximate stoichiometry $\mathrm{PuZn}_{7.7}$ has been determined from diffractometrically recorded, single-crystal intensities. The unit cell, containing four formula units of $\mathrm{Pu}_{3} \mathrm{Zn}_{22}$, is body-centered tetragonal with $a=8.85, c=21 \cdot 18 \AA$. The calculated density is $8.71 \mathrm{~g} . \mathrm{cm}^{-3}$, and the space group is $I 4_{1} / a m d$. This structure also accounts for the published powder pattern of a compound in the $\mathrm{Ce}-\mathrm{Zn}$ system. Cell constants for $\mathrm{Ce}_{3} \mathrm{Zn}_{22}$ are $a=8 \cdot 930, c=21 \cdot 36 \AA$.

Introduction

A compound with the approximate composition $\mathrm{PuZn}_{7.7}$ was discovered in a phase-relation study of the zinc-rich region of the $\mathrm{Pu}-\mathrm{Zn}$ system (Cramer \& Wood, 1967). The composition and symmetry indicated this to be a new structure type; we have carried out a determination of this structure to establish the actual composition of this material.

Experimental

Details concerning the preparation of $\mathrm{Pu}_{3} \mathrm{Zn}_{22}$ are given by Cramer \& Wood (1967). To minimize accidental contamination as well as to protect from the atmosphere, crystals were coated with Canada balsam dissolved in xylene. This procedure proved to be more convenient than the use of capillaries, yet provided adequate protection from the radioactive hazards of plutonium.

Single-crystal oscillation, Weissenberg and precession photos showed tetragonal symmetry. The systematic extinctions $[h+k+l \neq 2 n ; h k 0: h,(k) \neq 2 n ; h h l$: $(l \neq 2 n) ; 2 h+l \neq 4 n]$ and the $4 / \mathrm{mmm}$ Laue symmetry uniquely characterize the space group $I 4_{1} / a m d$. Lattice
constants, $a=8.85$ and $c=21 \cdot 18 \AA$, were obtained from uncalibrated Weissenberg and precession photographs and are thought to be accurate to about 0.3%.

Intensities were recorded diffractometrically with use of zirconium filtered Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$). A total of 229 independent reflections were measured up to a 2θ value of 40°. The shape of the crystal resembled a distorted cylinder. A 2θ-dependent absorption correction was applied assuming a cylindrical shape ($\mu r=3 \cdot 0$). In addition, a pronounced dependence of intensity with respect to φ was observed. An attempt to remove this dependency was made by measuring the intensities of several reflections at $\chi=90^{\circ}$ as a function of φ and applying the indicated correction to all data dependent only on the φ value at which the reflection was observed. This correction, which amounted to $\pm 50 \%$, was modified in the course of refinements as will be discussed later.

Determination of the structure

Precession photos of $\mathrm{Pu}_{3} \mathrm{Zn}_{22}$ were quite similar to those of the $\mathrm{Th}_{2} \mathrm{Ni}_{17}$ - and $\mathrm{Th}_{2} \mathrm{Zn}_{17}$-like compounds of Pu Zn . For example, the $h k 0$ zone of $\mathrm{Pu}_{3} \mathrm{Zn}_{22}$ could be mistaken for the $h h l$ zone of $\mathrm{Pu}_{2} \mathrm{Zn}_{17}\left(\mathrm{Th}_{2} \mathrm{Ni}_{17}\right.$-like $)$.

Table 1. Final parameters e.s.d.'s are given in parentheses.

	Wyckoff notation*	$10^{4} x$	$104 y$	$10^{4} z$	B
$\mathrm{Pu}(1)$	8(e)	0	0	1217 (3)	1.20 (0.14) \AA^{2}
Pu (2)	$4(b)$	0	0	1/2	$1 \cdot 19$ (0.19)
Zn (1)	32(i)	2413 (13)	2309 (11)	1853 (4)	2.13 (0.17)
Zn (2)	8(d)	0	1/4	5/8	1.58 (0.37)
Zn (3)	16(h)	0	2204 (15)	18 (7)	$2 \cdot 16$ (0.30)
Zn (4)	16(h)	0	1475 (15)	7415 (6)	$2 \cdot 15$ (0.29)
Zn (5)	16(h)	0	1526 (16)	3625 (6)	2.06 (0.29)

* Space group $I 4_{1} / a m d$ with origin at $4 m 2$.

Table 2. Observed and calculated structure factors and the phase angle, α
Phase angles differ from the expected values for a centrosymmetric structure because anomalous dispersion corrections have been made.

Table 3. Interatomic distances in $\mathrm{Pu}_{3} \mathrm{Zn}_{22}$

	Ligancy	Distance		Ligancy	Distance
$\mathrm{Pu}(1)$	2 Zn (5)	3.070 A	Zn (3)	2 Zn (1)	2.549 §
	2 Zn (4)	$3 \cdot 180$		1 Zn (5)	2.670
	2 Zn (3)	$3 \cdot 202$		2 Zn (3)	2.751
	4 Zn (1)	$3 \cdot 240$		2 Zn (1)	2.767
	2 Zn (3)	$3 \cdot 262$		2 Zn (4)	2.797
	4 Zn (1)	$3 \cdot 410$		1 Pu (1)	$3 \cdot 202$
	2 Zn (2)	3.644		1 Pu (1)	$3 \cdot 262$
				1 Pu (1)	3.644
$\mathrm{Pu}(2)$	4 Zn (4)	3.114			
	4 Zn (5)	$3 \cdot 212$	Zn (4)	1 Zn (4)	2.603
	8 Zn (1)	$3 \cdot 352$		1 Zn (2)	2.631
	4 Zn (2)	$3 \cdot 448$		2 Zn (1)	2.691
				2 Zn (1)	2.788
Zn (1)	1 Zn (3)	2.549		2 Zn (3)	2.797
	1 Zn (1)	2.581		2 Zn (5)	2.894
	1 Zn (2)	$2 \cdot 621$		1 Pu (2)	$3 \cdot 114$
	1 Zn (4)	2.691		1 Pu (1)	$3 \cdot 180$
	1 Zn (5)	2.721		1 Zn (5)	$3 \cdot 563$
	1 Zn (5)	2.746			
	1 Zn (1)	2.766	Zn (5)	2 Zn (2)	2.597
	1 Zn (3)	2.767		1 Zn (3)	2.670
	1 Zn (4)	2.788		2 Zn (1)	2.693
	$1 \mathrm{Pu}(1)$	3.240		${ }_{1} \mathrm{Zn}$ (5)	2.721
	1 Pu (2)	$3 \cdot 352$		2 Zn (1)	2.746
	1 Pu (1)	$3 \cdot 410$		2 Zn (4)	$2 \cdot 894$
				1 Pu (1)	3.070
Zn (2)	4 Zn (5)	2.597		1 Pu (2)	3.212
	4 Zn (1)	2.621		1 Zn (4)	$3 \cdot 563$
	${ }_{2} \mathbf{Z n}$ (4)	2.631			
	2 Pu (2)	$3 \cdot 448$			

The cell constants of $\mathrm{Pu}_{3} \mathrm{Zn}_{22}$ are related to $\mathrm{Th}_{2} \mathrm{Ni}_{17}{ }^{-}$ like $\mathrm{Pu}_{2} \mathrm{Zn}_{17}$ as follows: $a_{t} \sim c_{h}, c_{t} \sim 4 / 3 a_{h}$ where the subscripts refer to the tetragonal $\left(\mathrm{Pu}_{3} \mathrm{Zn}_{22}\right)$ and hexagonal ($\mathrm{Pu}_{2} \mathrm{Zn}_{17}$) phases. This similarity proved to be more of a hindrance than a help since the structure is not as closely related to the $\mathrm{Th}_{2} \mathrm{Ni}_{17}$ structure as some of the special zonal photographs would indicate.

The structure was solved by recourse to a Patterson map to locate the 12 plutonium atoms. Difference Fourier calculations based on the contribution of plutonium atoms enabled us to locate 88 zinc atoms distributed among five different crystallographic sites. Full-matrix least-squares calculations, using isotropic thermal parameters and the scattering factors of Cromer \& Waber (1965) corrected for anomalous dispersion (Cromer, 1965), resulted in an R value of 15%. The refinement was based on $|F|$ with the following weighting scheme (Smith, Johnson \& Nordine, 1965): $w=F_{o}^{1 / 4}, F_{o}<A ; w=A^{5 / 4} F_{o}^{-1}, F_{o}>A$, with $A=510$.

The agreement was not appreciably affected when the experimentally measured, φ-dependent absorption correction was omitted. In this case, however, the ratio $\left(k F_{o} / F_{c}\right)^{2}$, when plotted as a function of φ, described a curve very similar to the experimentally measured φ-dependent absorption curve. This new curve was shifted by about 20° in φ. In subsequent and final refinements we used the measured φ curve shifted by 20°. This single change reduced the R factor to $9 \cdot 6 \%$. Parameters remained very nearly the same. The shift of the φ-curve probably in some way compensates for the lack of an explicit χ-dependency in the absorption correction.

No noticeable improvement was noted when plutonium atoms were described with anisotropic thermal parameters. Including a separate isotropic thermal parameter for each atom, the R value for 229 reflections is equal to $9 \cdot 6 \%$. Final atom parameters are shown in Table 1. Observed and calculated structure factors are presented in Table 2, and interatomic distances in

Table 4. Calculated and observed powder pattern for $\mathrm{Ce}_{3} \mathrm{Zn}_{22}$
(Observed data from Lott \& Chiotti, 1966)

h	k	l	d_{0}	d_{c}	Io	I_{c}
1	0	1	$8 \cdot 246$	8.239	1	1
1	0	3	5.569	5.567	,	<1
1	1	2	$5 \cdot 443$	$5 \cdot 436$	<1	<1
0	0	4	-	$5 \cdot 340$	-	<1
2	0	0	$4 \cdot 467$	$4 \cdot 465$	2	1
-	-	-	$4 \cdot 276$	-	<1	-
2	0	2	-	$4 \cdot 119$	-	<1
2	1	1	3.929	3.926	<1	1
1	0	5	3.855	$3 \cdot 854$	2	2
2	1	3	$3 \cdot 483$	$3 \cdot 483$	15	15
2	0	4	$3 \cdot 428$	$3 \cdot 425$	2	2
2	2	0	$3 \cdot 156$	3.157	23	15
1	1	6	3.104	$3 \cdot 101$	<1	<1
3	0	1	-	2.948	-	<1
2	1	5	2.916	2.917	23	24
1	0	7	-	2.888	-	<1
2	0	6	2.783	2.784	1	1
3	0	3	2.745	2.746		11
3	1	2	2.730	2.730		8 29
-	-	-	2.725	-	28	
2	2	4	2.718	2.718		10
-	-	-	2.704	-		
0	0	8	2.670	2.670	10	18
3	1	4	-	2.496	-	<1
3	2	1	-	$2 \cdot 460$	-	<1
3	0	5	2.442	2.442	28	35
2	1	7	-	$2 \cdot 425$	-	<1
3	2	3	2.339	2.339	87	101
1	0	9	-	2.294	-	<1
2	0	8	2.292	2.292	100	100
4	0	0	$2 \cdot 232$	2.233	43	66
3	1	6	-	2.212	-	<1
4	0	2	$2 \cdot 185$	$2 \cdot 185$	2	2
4	1	1	2.154	2.155	31	2 2 32
3	2	5	$2 \cdot 142$	2.143 \}	31	30 \}
3	0	7	-	2.131	-	1
4	1	3	-	2.072	-	<1
3	3	2	2.065	2.065 \}	9	4
4	0	4	2.054	2.060 \}	9	<1
2	1	9	-	2.040	-	<1
2	2	8	2.039	2.039	25	22
1	1	10	-	2.023	-	<1
4	2	0	1.997	1.997	6	8
4	2	2	1.963	1.963	4	4

Table 3. Uncertainties in these distances are about $0.01-0.03 \AA$.

Subsequent to the determination of this structure, we became aware of the powder pattern reported for a compound tentatively identified as CeZn_{7} (Lott \& Chiotti, 1966). We have been able to account for this pattern on the basis of $\mathrm{Ce}_{3} \mathrm{Zn}_{22}$, isostructural with $\mathrm{Pu}_{3} \mathrm{Zn}_{22}$. Cell constants are $a=8.930 \pm 0 \cdot 003, c=21 \cdot 36$ $\pm 0.01 \AA$. Calculated intensities and d values for the first 40 lines are compared with the published values in Table 4. The remaining lines show an equally satisfactory agreement. Since the pattern was of a 76.53 wt. $\%$ zinc alloy and $\mathrm{Ce}_{3} \mathrm{Zn}_{22}$ corresponds to $77.4 \mathrm{wt} \%$ zinc, one would not be surprised to see extra lines arising from CeZn_{5}. This may account for some of the discrepancies; for example, the 101 line of CeZn_{5} has an intensity of 47 (out of 100) and would occur at $d=3 \cdot 155$, right on top of the 220 line of $\mathrm{Ce}_{3} \mathrm{Zn}_{22}$ which

Fig. 1. Projection of $\mathrm{Pu}_{3} \mathrm{Zn}_{22}$ onto the $a c$ plane. The centers of two of the hexagonal zinc sheaths (tubes) referred to in Fig. 2 are at $x=1 / 2, z=3 / 8$ and $x=0, z=7 / 8$. The axes of these tubes are normal to the plane of Fig. 1. Two more tubes related to the former by the 4_{1} screw axis have axes lying in the plane of Fig. 1. These are not easily visualized. The centers of these tubes are at $z=1 / 8$ and $5 / 8$.

Fig. 2. Stacking of $\mathrm{Pu}(1)$-containing zinc sheaths. $\mathrm{Pu}(2)$ atoms are located in the large cavities formed by this stacking.
was observed about 50% too strong. There is evidence, as well, for a phase at this approximate composition in the $\mathrm{La}-\mathrm{Zn}, \operatorname{Pr}-\mathrm{Zn}$, and $\mathrm{Nd}-\mathrm{Zn}$ systems (Veleckis, Schablaske, Johnson \& Feder, 1967). No diffraction patterns were reported, however.

Discussion

The structure of $\mathrm{Pu}_{3} \mathrm{Zn}_{22}$ bears a familial resemblance to the $D 2_{d}$ and related structures such as ThMn_{12} (Florio, Rundle \& Snow, 1952), $\mathrm{Th}_{2} \mathrm{Ni}_{17}$ (Florio, Baenziger \& Rundle, 1956), $\mathrm{Th}_{2} \mathrm{Zn}_{17}$ (Makorov \& Vinogradov, 1956), and $\mathrm{Gd}_{13} \mathrm{Zn}_{58}$ (Wang, 1967). Florio, Baenziger \& Rundle (1956) noticed that ThMn_{12} and $\mathrm{Th}_{2} \mathrm{Ni}_{17}$ could be obtained from several $D 2_{d}\left(\mathrm{CaZn} n_{5}\right.$ or $A B_{5}$) subcells; the larger cells and different stoichiometries were obtained by replacement of A atoms with pairs of B atoms. Thus, $6 A B_{5}$ cells, in the case of the $\mathrm{Th}_{2} \mathrm{Ni}_{17}$ structure, becomes $A_{4} B_{34}\left(A_{2} B_{17}\right)$ by the replacement of two A atoms with four B atoms. The general formula for these phases can be expressed as $A_{1-x} B_{5+2 x}$. The values of x, which we will call the substitution parameter, and the structure type for $D 2_{d^{-}}$ related structures are given in Table 5.

Table 5. Substitution parameter for $D 2_{d}$-related structures

x	Composition	Structure type
$-1 / 12$	$A_{13 / 12} B_{4-5 / 6}$	$\mathrm{Gd}_{13} \mathrm{Zn}_{58}$
0	$A B_{5}$	CaZn_{5}
$1 / 4$	$A_{3 / 4} B_{5-1 / 2}$	$\mathrm{Pu}_{3} \mathrm{Zn}_{22}$
$1 / 3$	$A_{2 / 3} B_{5-2 / 3}$	$\mathrm{Th}_{2} \mathrm{Zn}_{17} ; \mathrm{Th}_{2} \mathrm{Ni}_{17} *$
$1 / 2$	$A_{1 / 2} B_{6}$	ThMn_{12}

* Johnson \& Smith (1967) find that for the $\mathrm{Th}_{2} \mathrm{Ni}_{17}$ phase in the $\mathrm{Ce}-\mathrm{Mg}$ system, $x=0.43$.

In the case of $\mathrm{Pu}_{3} \mathrm{Zn}_{22}$ the integrity of the $D 2_{d}$ subcell has been somewhat compromised, probably to effect more efficient packing. The replacement of A atoms by two B atoms is preserved, however, and is readily apparent in the structure.

The relation to, yet difference from, the $D 2_{d}$ structure can be seen in Fig. 1, which is a projection of the structure onto the ac plane. In this Figure, one of the unusual aspects of the structure can be seen. Zinc atoms form hexagonal tubes surrounding $\mathrm{Pu}(1)$. The structure can be suitably described in terms of these tubes, the stacking of which is shown in Fig. 2. $\mathrm{Pu}(2)$ atoms are accommodated in the large cavities which are formed by this stacking.

This unusual arrangement achieves nearly identical environments for the two different plutonium atoms. The coordination polyhedra (C.P.) of these atoms are shown in Fig. 3. $\mathrm{Pu}(1)$ has 18 ligands, whereas $\mathrm{Pu}(2)$ has 20. In place of the two missing zinc atoms, $\mathrm{Pu}(1)$ has two $\mathrm{Pu}(1)$ neighbors (which are not considered as part of the C.P.) at a distance of $4 \cdot 412 \AA$. The substitution of a pair of zinc atoms for a plutonium atom mentioned earlier accounts for this difference. $\mathrm{Pu}(1)$

Fig. 3. (a) Coordination about $\mathrm{Pu}(1)$. Location of neighboring $\mathrm{Pu}(1)$ shown by dotted lines. These $\mathrm{Pu}(1)$'s are too distant to be considered part of the coordination polyhedron, but are included to indicate the axis of the zinc sheaths pictured in Fig. 2. (b) Coordination about Pu(2). A pair of zinc atoms, $\mathrm{Zn}(4)$, takes the place of the $\mathrm{Pu}(1)$, shown by dotted lines in (a).
atoms could be pictured as constituting a one-dimensional chain contained within a zinc sheath. The C.P. of $\mathrm{Pu}(1)$ are fused together to form this continuous sheath because of the missing zinc pair.

There are no unusual C.P. encountered among the individual C.P. of zinc atoms. $\mathrm{Zn}(1)$ and $\mathrm{Zn}(2)$ have 12 ligands arranged in a distorted icosahedron. This distortion is caused, in the case of $\mathrm{Zn}(1)$, by three plutonium atoms and, in the case of $\mathrm{Zn}(2)$, by two plutonium atoms. There are 13 ligands surrounding $\mathrm{Zn}(3)$ in an arrangement similar to that of $\mathrm{Ni}(2)$ in the $\mathrm{Th}_{2} \mathrm{Ni}_{17}$ structure (Florio et al., 1956). The C.P. for $\mathrm{Zn}(4)$ and $\mathrm{Zn}(5)$ could be thought of as half-way between the icosahedral arrangement of $\mathrm{Zn}(1)$ and $\mathrm{Zn}(2)$ and the thirteenfold ligancy of $\mathrm{Zn}(3)$. The extra atom in the $\mathrm{Zn}(4) \mathrm{C} . P$. is $\mathrm{Zn}(5)$ at a distance of $3.56 \AA$, considerably longer than the average zinc-zinc distance. In analogous manner, $\mathrm{Zn}(5)$ has an extra $\mathrm{Zn}(4)$ in its C.P. at this same distance.

This work was done under the auspices of the U.S. Atomic Energy Commission.

References

Cramer, E. M. \& Wood, D. H. (1967). J. Less-Common Metals, 13, 112.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Florio, J. V., Baenziger, N. C. \& Rundle, R. E. (1956). Acta Cryst. 9, 367.
Florio, J. V., Rundle, R. E. \& Snow, A. I. (1952). Acta Cryst. 5, 449.
Johnson, Q. \& Smith, G. S. (1967). Acta Cryst. 23, 327.
Lotт, B. G. \& Chotti, P. (1966). Acta Cryst. 20, 733.
Makorov, E. S. \& Vinogradov, S. I. (1956). Kristallografiya, 1, 634.
Smith, G. S., Johnson, Q. \& Nordine, P. C. (1965). Acta Cryst. 19, 668.
Veleckis, E., Schablaske, R. V., Johnson, I. \& Feder, H. M. (1967). Trans. Met. Soc. AIME 239, 58.

Wang, F. E. (1967). Acta Cryst. 22, 579.

